

Fig. 2. The molecular packing: $\mathrm{N}-\mathrm{H} \cdot \cdots \mathrm{S}$ bridges are denoted by dotted lines.
only the electron density of H 1 was localized at 0.85 (3) \AA from the indolyl N atom.

The bond distances and uniformly small angles of the indolyl unit show the delocalization of π electrons over the whole indolyl moiety; the bond C4-C9 [1.417 (3) \AA] is elongated in comparison with a typical benzene bond, the bonds C3-C4 [1.424 (3) \AA], N1-C2 [1.369 (2) \AA] are shorter than expected for single bonds, and $\mathrm{C}(2)-\mathrm{C}(3)$ [$1 \cdot 392$ (2) \AA] cannot be considered as a double bond.

No conjugation between the indolyl and pyridyl ring can be assumed because of a high torsion angle around the $\mathrm{C} 3-\mathrm{N} 11$ bond; $\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 11-\mathrm{C} 12$ is $55 \cdot 4^{\circ}$ and $\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 11-\mathrm{Cl} 658 \cdot 3^{\circ}$. The $\mathrm{C} 3-\mathrm{N} 11$
bond deviates slightly from the indolyl plane; the torsion angles are $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 11-2 \cdot 7^{\circ}$ and $\mathrm{S} 10-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 116.5^{\circ}$.

The packing of atoms in the unit cell is shown in Fig. 2. The molecules are paired by two symmetrically equivalent hydrogen bridges $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}^{\mathrm{i}}$, thus forming dimers around the screw axis: $\mathrm{N} 1-\mathrm{Hl}$ 0.85 (2), $\mathrm{N} 1 \cdots \mathrm{~S}^{\mathrm{i}} 3.366$ (2), $\mathrm{Hl} \cdots \mathrm{S}^{\mathrm{i}} 2 \cdot 57$ (2) \AA, angle $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~S}^{\mathrm{i}} 157(1)^{\circ}\left[(\mathrm{i})-x, y-\frac{1}{2}, \frac{3}{2}-z\right]$.

The authors thank J. Gouda and P. Kristian for preparation of crystals for measurement.

References

Gonda, J. \& Kristian, P. (1988). Collect. Czech. Chem. Commun. 53, 1761-1769.
Gonda, J., Kristian, P. \& Imrich, J. (1987). Collect. Czech. Chem. Commun. 52, 2508-2520.
HAŠEK, J. (1981). IMC program package. In Experimental Techniques in X-ray and Neutron Structure Analysis (in Czechoslovakian). Institute of Macromolecular Chemistry, Praha, Czechoslovakia.
HaŠek, J. (1985). Acta Cryst. C41, 583-586.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nardelli, M. (1983). Comput. Chem. 3, 95-98.
Roberts, D. \& Sheldrick, G. M. (1976). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1990). C46, 437-439

Structure of Karanjin*

By Meena Hariharan and S. S. Rajan \dagger
Department of Biophysics and Crystallography, \ddagger University of Madras, Guindy Campus, Madras-600 025, India

(Received 13 October 1988; accepted 2 June 1989)

Abstract

C}_{18} \mathrm{H}_{12} \mathrm{O}_{4}, M_{r}=292 \cdot 3\), monoclinic, $P 2_{1} / n, a$ $=7 \cdot 196$ (3), $\quad b=11.275$ (3), $c=17.495$ (3) $\AA, \quad \beta=$ 100.70 (2) ${ }^{\circ}, V=1394.8$ (7) $\AA^{3}, D_{m}=1.38$ (2),,$D_{x}=$ $1.39 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=4, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \quad \mu=$ $7.2 \mathrm{~cm}^{-1}, T=293 \mathrm{~K}, F(000)=608, R=0.058, w R=$

[^0]0.066 for 1453 reflections with $I \geq 2 \sigma(I)$. The furan ring is planar while the pyran ring is distorted from planarity. The phenyl ring makes an angle of 28.7 (2) ${ }^{\circ}$ with the pyran ring.

Introduction. The title compound, a naturally occurring furoflavone, extracted from the seed oil of the Indian beech Pongamia glabra (Aneja, Khanna \& Seshadri, 1963), was obtained from commercial sour(c) 1990 International Union of Crystallography

Table 1. Positional parameters and equivalent isotropic temperature factors of non-hydrogen atoms with e.s.d.'s in parentheses

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cq }}\left(\AA^{2}\right)$
01	0.2530 (5)	-0.2718 (3)	0.4546 (2)	0.073 (2)
02	0.2582 (4)	$0 \cdot 1191$ (3)	0.5300 (2)	0.050 (2)
O3	0.3171 (6)	0.2426 (4)	0.3174 (2)	0.076 (2)
04	0.3064 (5)	0.3995 (3)	0.4361 (2)	0.066 (2)
C1	0.2306 (7)	-0.1487 (4)	0.5539 (3)	0.059 (3)
C2	0.2333 (8)	-0.2616 (5)	0.5311 (4)	0.071 (4)
C3	0.2621 (7)	-0.1590 (5)	0.4288 (3)	0.058 (3)
C4	0.2844 (9)	-0.1269 (6)	0.3538 (3)	0.072 (4)
C5	0.2928 (8)	-0.0085 (6)	0.3392 (3)	0.067 (3)
C6	$0 \cdot 2823$ (7)	0.0764 (4)	0.3969 (2)	0.053 (2)
C7	0.2611 (6)	0.0424 (4)	0.4708 (2)	0.046 (2)
C8	0.2485 (6)	-0.0796 (5)	0.4871 (3)	0.050 (2)
C9	0.2951 (7)	0.2036 (4)	0.3813 (3)	0.056 (3)
C10	0.2880 (7)	0.2804 (4)	0.4467 (3)	0.050 (3)
C11	0.2753 (6)	0.2379 (4)	0.5179 (2)	0.047 (2)
C 12	0.1423 (11)	0.4532 (6)	0.3874 (5)	0.077 (4)
C 13	0.2780 (6)	$0 \cdot 3057$ (4)	0.5901 (3)	0.048 (2)
C14	0.3738 (8)	0.4135 (5)	0.6030 (3)	0.059 (3)
C 15	0.3803 (9)	0.4756 (5)	0.6720 (3)	0.066 (3)
C16	$0 \cdot 2837$ (10)	0.4312 (6)	0.7276 (4)	0.080 (4)
C17	0.1899 (10)	$0 \cdot 3255$ (6)	0.7155 (3)	0.078 (4)
C18	$0 \cdot 1887$ (8)	$0 \cdot 2610$ (5)	0.6479 (3)	0.063 (3)

ces. It is widely used as a drug in Indian medicines for treating scabies, herpes and leucoderma. It is also used in the treatment of dyspepsia with sluggish liver, diarrhoea, cough, leprosy and beri-beri (Krishnamurthy, 1969; Nadkarni \& Chopra, 1976). This paper describes the molecular structure of karanjin obtained by X-ray diffraction techniques.

Experimental. Colourless needle-shaped single crystals by slow evaporation from methanol, 0.22×0.17 $\times 0.12 \mathrm{~mm}, \quad D_{m}$ by flotation, three-dimensional intensity data from Enraf-Nonius CAD-4 automatic diffractometer using graphite-monochromated $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$). Cell constants from 25 strong reflections in the range $34 \leq 2 \theta \leq 84^{\circ}, \omega / 2 \theta$ scan mode, 2416 reflections collected in the range 4 $\leq 2 \theta \leq 130^{\circ}, \quad 0 \leq h \leq 8, \quad 0 \leq k \leq 13, \quad-20 \leq l \leq 20$. Two standard reflections ($\overline{2} 51, \overline{2} 34$) showed 3% average fluctuation, Lorentz and polarization corrections but no absorption correction ($\mu t<1$). 1453 reflections with $I \geq 2 \sigma(I)$, structure solution by direct methods using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). H -atom positions from ΔF map, full-matrix leastsquares refinement with anisotropic temperature factors for non-hydrogen atoms and isotropic for hydrogens using SHELX76 (Sheldrick, 1976). Final $R=0.058$ and $w R=0.066$, individual weighting scheme where $w=0.005 /\left[\sigma^{2}\left(F_{o}^{2}\right)+0.034 F_{o}^{2}\right]$, goodness of fit S for 247 parameters $=0.023$, final (shift/ e.s.d.) $\max =0.504$ and (shift/e.s.d.) $\mathrm{av}_{\mathrm{a}}=0.106$. Final ΔF map showed no peaks $>0.25 \mathrm{e}^{-3} \AA^{-3}$. The scattering factors are as in International Tables for X-ray Crystallography (1974).

Discussion. The final positional parameters with equivalent isotropic temperature factors of nonhydrogen atoms are given in Table 1. The bond lengths and angles involving all the non-hydrogen atoms are shown in Figs. 1 and 2 respectively.*

In all essential details, the geometry of the molecules in terms of bond lengths and angles shows normal values.

[^1]Fig. 1. Bond lengths (\AA) involving non-hydrogen atoms.

Fig. 2. Bond angles $\left({ }^{\circ}\right)$ involving non-hydrogen atoms.

Fig. 3. Stereoview of the packing of the molecules in the unit cell.

The $\mathrm{C}-\mathrm{O}$ bond lengths in the pyrone ring are symmetrical with $\mathrm{C} 7-\mathrm{O} 2=1.352(5)$ and $\mathrm{C} 11-\mathrm{O} 2$ $=1.366(5) \AA$.

The widening of the angle $\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$, 124.0 (4) ${ }^{\circ}$, and the narrowing of the angle C6-C9-C10, $115 \cdot 3$ (4) ${ }^{\circ}$, in ring C may be attributed to the ring strain caused by the neighbouring $\mathrm{C} s p^{2}-\mathrm{C} s p^{2}$ atoms and has been observed in ethyl 1 -cyano-1,2,-3,4-tetrahydro-2-isoquinolinecarboxylate (Gzella, Jaskólski, Rychlewska \& Kosturkiewicz, 1984).

The methoxy group attached to ring C is rotated from the plane of the ring about the bond C10-O4 by an angle of $71 \cdot 6(6)^{\circ}$. The deviation of C 12 from the plane of the ring is $1-226(8) \AA$. A similar rotation of the methoxy group has been observed in various structures: celebixanthone, 72.8° (Stout, Stout \& Welsh, 1963), 2-hydroxy-1,3,4,7-tetramethoxyxanthone, $72 \cdot 0,58 \cdot 1,83 \cdot 0^{\circ}$ (Stout, Shunlin \& Singh, 1969), xanthone B, $64 \cdot 0^{\circ}$ (Ravikumar, Rajan \& Padmanabhan, 1987).

The rings A, B and D are planar $\left(\chi^{2}=1 \cdot 0,8.7\right.$ and 29.6 respectively). The pyran ring C is distorted (χ^{2} $=68 \cdot 1$). The angles between A and B, A and C, and B and C are 1.1 (2), $3.0(2)$ and $2.4(2)^{\circ}$ respectively, showing that the rings A, B and C are coplanar. Similar coplanarity of the phenyl ring B and the pyrone ring C has been observed in $3^{\prime}, 5,5^{\prime}, 6$-tetramethoxyflavone (Ting, Watson \& Dominguez, 1972). The rotation of the phenyl ring D through 28.7 (2) ${ }^{\circ}$ from the plane of the pyran ring may be to minimize the steric interaction between the oxygen atom O 2 in the pyrone ring and O 4 of the methoxy group with the phenyl ring D. This is substantiated by the distances $\mathrm{HC} 18 \cdots \mathrm{O} 2$ and $\mathrm{HC} 14 \cdots \mathrm{O} 4,2 \cdot 36(6)$ and 2.36 (5) \AA respectively, which are less than $2.62 \AA$, the sum of the van der Waals radii of the H and O atoms (Srinivasan, Meena Hariharan \& Vijayalakshmi, 1987; Nyburg \& Faerman, 1985).

A stereoview of the unit-cell packing (Motherwell, 1978) is shown in Fig. 3. The molecules are stacked
along the a axis with $\mathrm{C} 7 \cdots \mathrm{C} 8(1-x,-y, 1-z)$ being 3.494 (7) \AA. The structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$-type contacts and stacking forces. C 14 is linked by a hydrogen bond to O ($1-x, 1-y, 1-$ z) with $\mathrm{C} 14 \cdots \mathrm{O} 4385$ (7), $\mathrm{C} 14-\mathrm{HC} 141.01$ (6) \AA and angle $\mathrm{Cl} 4-\mathrm{HCl} 4 \cdots \mathrm{O} 4 \quad 137(4)^{\circ}$. There is another $\mathrm{C} \cdots \mathrm{O}$ contact, between C 4 and $\mathrm{O} 3\left(\frac{1}{2}-x, y\right.$ $-\frac{1}{2}, \frac{1}{2}-z$), with $\mathrm{C} 4 \cdots \mathrm{O} 33 \cdot 294$ (7) \AA. The molecules lie approximately in the $b c$ plane.

References

Aneja, R., Khanna, R. N. \& Seshadri, T. R. (1963). J. Chem. Soc. pp. 163-168.
Gzella, A., Jaskólski, M., Rychlewska, U. \& Kosturkiewicz, Z. (1984). Acta Cryst. C40, 2098-2100.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Krishnamurthy, A. S. (1969). The Wealth of India, Vol. III. New Delhi: Council of Scientific and Industrial Research.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
MOTHERWELL, W. D. S. (1978). PLUTO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nadkarni, A. K. \& Chopra, R. N. (1976). India Materia-Medica. Bombay: Popular Prakasan.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Ravikumar, K., Rajan, S. S. \& Padmanabhan, V. M. (1987). Acta Cryst. C43, 553-555.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Srinivasan, R., Meena Hariharan \& Vuayalakshmi, J. (1987). Curr. Sci. 56, 942-945.
Stout, G. H., Shunlin, T. \& Singh, J. (1969). Tetrahedron, 25, 1975-1983.
Stout, G. H., Stout, V. F. \& Welsh, M. J. (1963). Tetrahedron, 19, 667-676.
Ting, H. Y., Watson, W. H. \& Dominguez, X. A. (1972). Acta Cryst. B28, 1046-1051.

Acta Cryst. (1990). C46, 439-441

Structure of Dicyclopenta[ef,kl]heptalene (Azupyrene)

By Arthur G. Anderson Jr, Susan C. Critchlow, Lawrence C. Andrews and Ralph D. Haddock Department of Chemistry, University of Washington, Seattle, Washington 98195, USA

(Received 11 October 1988; accepted 30 June 1989)

[^2]
[^0]: * 3-Methoxy-2-phenyl-4 H -furo[2,3-h][1] benzopyran-4-one. \dagger To whom correspondence should be addressed. \ddagger DCB contribution No. 744.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52299 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: $0.692 \mathrm{~cm}^{-1}, F(000)=424, T=298(1) \mathrm{K}, R=0.055$ for 961 observed reflections. The molecule is planar with slight perimeter bond-length alternation, primarily in the five-carbon-ring moieties. The lengths of © 1990 International Union of Crystallography

